Extension of Collins hard limiter paper to case where the noise characteristics of each hard limiter stage are not identical.

In practice the noise characteristics of each stage of a cascade of filtered limiter amplifiers may not be identical.

Starting with Equations 19 and 20 from the Collins paper:

$$
\begin{equation*}
J^{2}=\frac{N_{0}}{4 V \rho_{\text {in }}} Q M \tag{19}
\end{equation*}
$$

where M, the normalized square jitter, is given by

$$
\begin{align*}
M & =g_{1}+\frac{g_{1} g_{2}}{g_{1}^{2}}+\frac{g_{1} g_{2} g_{3}}{g_{1}^{2} g_{2}^{2}}+\cdots+\frac{g_{1} g_{2} \cdots g_{n}}{g_{1}^{2} g_{2}^{2} \cdots g_{n-1}^{2}} \\
& =g_{1}+\frac{g_{2}}{g_{1}}+\frac{g_{3}}{g_{1} g_{2}}+\cdots+\frac{g_{n}}{g_{1} g_{2} \cdots g_{n-1}} . \tag{20}
\end{align*}
$$

with the auxiliary minimisation problem: minimise

$$
\begin{equation*}
M^{\prime}=g_{n-1}+\frac{g_{n}}{g_{n-1}} \quad \text { subject to } \quad g_{n-1} g_{n}=\text { constant } \tag{21}
\end{equation*}
$$

The solution to this minimization problem is

$$
\begin{equation*}
g_{n-1}=\sqrt{2 g_{n}} . \tag{22}
\end{equation*}
$$

MODIFICATIONS

When $\mathrm{Q}, \mathrm{V}, \mathrm{N}_{0}$ differ for each stage

$$
\begin{equation*}
\mathbf{J}^{2}=\sum\left(\mathbf{N}_{0 \mathbf{j}} \mathbf{Q}_{\mathbf{j}} \mathbf{g}_{\mathbf{j}}\right) /\left(4 \mathbf{V}_{\mathbf{j}} \mathbf{\rho}_{\mathrm{j}}\right) \tag{23}
\end{equation*}
$$

where
$\mathbf{N}_{0 \mathrm{j}} \quad$ is the square of the equivalent input voltage noise spectral density $\left(\mathrm{N}_{\mathrm{o}}\right)$ for limiter j
$\mathbf{Q}_{\mathbf{j}} \quad$ is Q for limiter j
$\mathbf{g}_{\mathbf{j}} \quad$ is the slope gain of limiter stage j
$\mathbf{V}_{\mathbf{j}} \quad$ is the pp clamp voltage for limiter stage \mathbf{j}
$\boldsymbol{\rho}_{\mathbf{j}} \quad$ is the input slew rate for limiter stage j
Equation 23 can be re written as

$$
\begin{equation*}
\mathbf{J}^{2}=\left(\left(\mathbf{N}_{01} \mathbf{Q}_{1}\right) /\left(4 \mathbf{V}_{1} \boldsymbol{\rho}_{\text {in }}\right)\right) \mathbf{M} \tag{24}
\end{equation*}
$$

where

$$
M=g_{1}+\left(g_{2} / g_{1}\right)\left(N_{02} / N_{01}\right)\left(Q_{2} / Q_{1}\right)\left(V_{1} / V_{2}\right)+\left(g_{3} / g_{1} g_{2}\right)\left(N_{03} / N_{01}\right)\left(Q_{3} / Q_{1}\right)\left(V_{1} / V_{3}\right)+\ldots
$$

or

$$
\begin{equation*}
\mathbf{M}=g_{1}+\left(g_{2} / g_{1}\right) \varepsilon_{1}+\varepsilon_{2}\left(g_{3} / g_{1} g_{2}\right)+\ldots+\varepsilon_{n} g_{n} /\left(g_{1} g_{2} \ldots g_{n-1}\right) \tag{25}
\end{equation*}
$$

where

$$
\begin{equation*}
\varepsilon_{j}=\left(N_{0 j} / N_{01}\right)\left(Q_{j} / Q_{1}\right)\left(V_{1} / V_{j}\right) \tag{26}
\end{equation*}
$$

with the auxiliary minimisation problem: minimise

$$
\begin{equation*}
g_{n-1}+\gamma_{n}\left(g_{n} / g_{n-1}\right) \tag{27}
\end{equation*}
$$

subject to the constraint

$$
g_{n} g_{n-1}=\text { constant }
$$

Where

$$
\begin{equation*}
\gamma_{n}=\left(N_{0 n} / N_{0 n-1}\right)\left(Q_{n} / Q_{n-1}\right)\left(V_{n-1} / V_{n}\right) \tag{28}
\end{equation*}
$$

or

$$
\begin{equation*}
\gamma_{\mathrm{n}}=\left(\varepsilon_{\mathrm{n}} / \varepsilon_{\mathrm{n}-1}\right) \tag{29}
\end{equation*}
$$

The solution to which is

$$
\begin{equation*}
\mathbf{g}_{\mathrm{n}-1}{ }^{2}=2 \gamma_{\mathrm{n}} \mathrm{~g}_{\mathrm{n}} \tag{30}
\end{equation*}
$$

or

$$
g_{n-1}=\sqrt{ }\left(2 \gamma_{n} g_{n}\right)
$$

by induction:

$$
g_{i-1}=\sqrt{\left(2 \gamma_{i} g_{i}\right)} \quad i=1,2,3, \ldots ., n
$$

Slope gain calculation for multistage limiters

2 Stage limiter

$$
\begin{aligned}
& g_{1} g_{2}=g \\
& g_{1}{ }^{2}=2 \gamma_{2} g_{2} \\
& g_{1}{ }^{3}=2 \gamma_{2} g
\end{aligned}
$$

3 stage limiter

$$
\begin{aligned}
& g_{1} g_{2} g_{3}=g \\
& g_{2}^{2}=2 \gamma_{3} g_{3} \\
& g_{1}^{2}=2 \gamma_{2} g_{2} \\
& g_{1}{ }^{7}=2^{4} \gamma_{2}^{3} \gamma_{3} g
\end{aligned}
$$

4 stage limiter

$$
\begin{aligned}
& g_{1} g_{2} g_{3} g_{4}=g \\
& g_{3}^{2}=2 \gamma_{4} g_{4} \\
& g_{2}^{2}=2 \gamma_{3} g_{3} \\
& g_{1}^{2}=2 \gamma_{2} g_{2} \\
& g_{1}{ }^{15}=2^{11} \gamma_{2}^{7} \gamma_{3}^{3} \gamma_{4} g
\end{aligned}
$$

5 stage limiter

$$
g_{1} g_{2} g_{3} g_{4} g_{5}=g
$$

$$
g_{4}^{2}=2 \gamma_{5} g_{5}
$$

$$
g_{3}^{2}=2 \gamma_{4} g_{4}
$$

$$
g_{2}^{2}=2 \gamma_{3} g_{3}
$$

$$
g_{1}^{2}=2 \gamma_{2} g_{2}
$$

$$
g_{1}{ }^{31}=2^{26} \boldsymbol{\gamma}_{2}{ }^{15} \gamma_{3}{ }^{7} \gamma_{4}{ }^{3} \gamma_{5} g
$$

6 stage limiter

$$
\begin{aligned}
g_{1} g_{2} g_{3} g_{4} g_{5} g_{6} & =g \\
g_{5}^{2} & =2 \gamma_{6} g_{6} \\
g_{4}^{2} & =2 \gamma_{5} g_{5} \\
g_{3}^{2} & =2 \gamma_{4} g_{4} \\
g_{2}^{2} & =2 \gamma_{3} g_{3} \\
g_{1}^{2} & =2 \gamma_{2} g_{2} \\
g_{1}{ }^{63} & =2^{57} \gamma_{2}^{3 l} \gamma_{3}{ }^{15} \gamma_{4}{ }^{7} \gamma_{5}^{3} \gamma_{6} g
\end{aligned}
$$

The calculation of the filter time constants and voltage gain of each stage from its slope gain is the same as in the Collins paper. Only the calculation of the slope gain and the jitter differ.

